Lightcurves for four minor planets were obtained at Bassano Bresciano Observatory from 2012 August to December: 612 Veronika, 1474 Beira, 1604 Tombaugh, and 1060 Magnolia.

Photometric measurements of four minor planets were obtained at Bassano Bresciano Observatory (565) using the 0.32-m f/3.1 Schmidt and Starlight HX-516 CCD camera at prime focus. Polypus software v1.8.1 (Bassano Bresciano Observatory, 2010) was used to control the robotic observations. Exposure times for the unfiltered, unguided images were 120 s. Most of exposures were taken when target’s altitude was more than 30°. Due to the negative declination of some of the asteroids, some exposures were taken when target’s altitude was more than 25°. All raw images were processed with flat field and dark frames. Only solar-averaged images were used to control the robotic observations. Exposure times for Polypus were 10.4 ± 0.2 h. The amplitude of the lightcurve is $A = 0.14 \pm 0.02$ mag. $P = 7.047 \pm 0.001$ h with quality code U = 3+. It was observed for three nights in 2012 October and, after a long spell of bad weather, again on three nights in December, or a total span of 53 days. The longest session was about 4 hours and showed a bimodal lightcurve. Period spectrum analysis found a best-fit period of 7.056 ± 0.001 h with amplitude $A = 0.35 \pm 0.02$ mag.

Asteroid 612 Veronika

This asteroid was selected in the list by Warner et al. (2011) and it was observed for eight nights covering a 35-day span. Three sessions were longer than five hours; all these show a very asymmetric but incomplete lightcurve. Period spectrum analysis showed only one deep minimum in the RMS fit, at $P = 8.244 \pm 0.001$ h. The amplitude of the lightcurve is $A = 0.14 \pm 0.02$ mag.

Asteroid 1060 Magnolia

This asteroid was selected from the list in Warner et al. (2011a). The asteroid was reported to have a period 2.9017 h, amplitude $0.09-0.14$ mag, and quality code $U = 2$ (see Behrend, 2009). It was observed for seven nights covering a 12-day span. Three sessions were longer than 6 hours; these didn’t show the 2.917-hour period as expected. The low amplitude of the lightcurve versus the noise in the data made finding a definite period difficult. The analysis shows a small preference for $P = 5.821$ h with $A = 0.08 \pm 0.02$ mag. Periods of 2.901 h and 5.821 h were plotted and analysed. The dispersion for $P = 5.821$ showed the smaller dispersion. When plotting single sessions longer than six hours versus both periods, we saw a better overlap with $P = 5.821$ h. This leads us to conclude that this is the correct period.

Asteroid 1474 Beira

This asteroid was selected from the list in Warner et al. (2011a), which indicated a period of 4.184 h, amplitude 0.18 mag, and quality code $U = 3$. It was observed for seven nights over a 19-day span. The sky motion was so large that it was necessary to move the telescope during the night to keep the asteroid within the image. We used two sessions per night and aligned them by changing the zero point of the second session. After that, we used the two sessions as one when doing a period search. Some sessions were longer than 6 hours, all of them clearly showing an asymmetric curve with at least 3 minimums and 3 maximums. This removed all doubt about the period solution. Period spectrum analysis found $P = 4.184 \pm 0.001$ h with $A = 0.24 \pm 0.02$ mag, which confirmed the period reported in Warner et al. (2011b) where it was reported to have $P = 7.047$ h, $A = 0.16-0.20$, and quality code $U = 2$. It was observed for three nights in 2012 October and, after a long spell of bad weather, again on three nights in December, or a total span of 53 days. The longest session was about 4 hours and showed a bimodal lightcurve. Period spectrum analysis found a best-fit period of 7.056 ± 0.001 h with amplitude $A = 0.35 \pm 0.02$ mag.

References
